1,597 research outputs found

    Dark Matter Prediction from Canonical Quantum Gravity with Frame Fixing

    Full text link
    We show how, in canonical quantum cosmology, the frame fixing induces a new energy density contribution having features compatible with the (actual) cold dark matter component of the Universe. First we quantize the closed Friedmann-Robertson-Walker (FRW) model in a sinchronous reference and determine the spectrum of the super-Hamiltonian in the presence of ultra-relativistic matter and a perfect gas contribution. Then we include in this model small inhomogeneous (spherical) perturbations in the spirit of the Lemaitre-Tolman cosmology. The main issue of our analysis consists in outlining that, in the classical limit, the non-zero eigenvalue of the super-Hamiltonian can make account for the present value of the dark matter critical parameter. Furthermore we obtain a direct correlation between the inhomogeneities in our dark matter candidate and those one appearing in the ultra-relativistic matter.Comment: 5 pages, to appear on Modern Physics Letters

    The role of the time gauge in the 2nd order formalism

    Full text link
    We perform a canonical quantization of gravity in a second-order formulation, taking as configuration variables those describing a 4-bein, not adapted to the space-time splitting. We outline how, neither if we fix the Lorentz frame before quantizing, nor if we perform no gauge fixing at all, is invariance under boost transformations affected by the quantization.Comment: 4 pages, Proceedings of the II Stueckelberg Worksho

    Dualism between Physical Frames and Time in Quantum Gravity

    Full text link
    In this work we present a discussion of the existing links between the procedures of endowing the quantum gravity with a real time and of including in the theory a physical reference frame. More precisely, as first step, we develop the canonical quantum dynamics, starting from the Einstein equations in presence of a dust fluid and arrive to a Schroedinger evolution. Then, by fixing the lapse function in the path integral of gravity, we get a Schroedinger quantum dynamics, of which eigenvalues problem provides the appearance of a dust fluid in the classical limit. The main issue of our analysis is to claim that a theory, in which the time displacement invariance, on a quantum level, is broken, is indistinguishable from a theory for which this symmetry holds, but a real reference fluid is included.Comment: 9 pages, submitted to Mod. Phys. Lett. A, major replacements in section 3 and

    A fuzzy approach to similarity in Case-Based Reasoning suitable to SQL implementation

    Get PDF
    The aim of this paper is to formally introduce a notion of acceptance and similarity, based on fuzzy logic, among case features in a case retrieval system. This is pursued by rst reviewing the relationships between distance-based similarity (i.e. the standard approach in CBR) and fuzzy-based similarity, with particular attention to the formalization of a case retrieval process based on fuzzy query specication. In particular, we present an approach where local acceptance relative to a feature can be expressed through fuzzy distributions on its domain, abstracting the actual values to linguistic terms. Furthermore, global acceptance is completely grounded on fuzzy logic, by means of the usual combinations of local distributions through specic dened norms. We propose a retrieval architecture, based on the above notions and realized through a fuzzy extension of SQL, directly implemented on a standard relational DBMS. The advantage of this approach is that the whole power of an SQL engine can be fully exploited, with no need of implementing specic retrieval algorithms. The approach is illustrated by means of some examples from a recommender system called MyWine, aimed at recommending the suitable wine bottles to a customer providing her requirements in both crisp and fuzzy way

    General Relativity as Classical Limit of Evolutionary Quantum Gravity

    Full text link
    We analyze the dynamics of the gravitational field when the covariance is restricted to a synchronous gauge. In the spirit of the Noether theorem, we determine the conservation law associated to the Lagrangian invariance and we outline that a non-vanishing behavior of the Hamiltonian comes out. We then interpret such resulting non-zero ``energy'' of the gravitational field in terms of a dust fluid. This new matter contribution is co-moving to the slicing and it accounts for the ``materialization'' of a synchronous reference from the corresponding gauge condition. Further, we analyze the quantum dynamics of a generic inhomogeneous Universe as described by this evolutionary scheme, asymptotically to the singularity. We show how the phenomenology of such a model overlaps the corresponding Wheeler-DeWitt picture. Finally, we study the possibility of a Schr\"odinger dynamics of the gravitational field as a consequence of the correspondence inferred between the ensemble dynamics of stochastic systems and the WKB limit of their quantum evolution. We demonstrate that the time dependence of the ensemble distribution is associated with the first order correction in â„Ź\hbar to the WKB expansion of the energy spectrum.Comment: 23 pages, to appear on Class. Quant. Gra
    • …
    corecore